Dopamine D3 receptor gene deletion or D3 pharmacological antagonism counteracts alcohol intake in mice

G. M. Leggio¹, G. Camillieri¹, A. Castorina², C. B. M. Platania¹, G. Marrazzo¹, V. D'Agata², F. Drago¹, C. Bucolo¹, S. Salomone¹

¹Department of Clinical and Molecular Biomedicine, Section of Pharmacology and Biochemistry, ²Department of Bio-Medical Sciences; Catania University, Catania, Italy *Equally contributing authors

Mesolimbic dopamine controls drug and alcohol seeking behavior. Stimulation of dopamine D_3 autoreceptor reduces extracellular levels of dopamine. We tested the hypothesis that dopamine D_3 receptor (D_3R) gene deletion or its pharmacological blockade counteracts alcohol preference and intake in a long-term voluntary ethanol intake paradigm. Mice D_3R^{-r} and their wild type (WT) littermates, treated or not with the D_3R antagonists U99194A and SB277011A, were tested. The selectivity of the D_3R antagonists was further assessed by molecular modeling. Activation of dopamine (DA) transmission and D_3R expression was assessed at the end of the experiment. After 8 days, daily ethanol intake was negligible in D_3R^{-r} and robust in WT; this behavior was stably maintained for 44 days. Treatment with D_3R antagonists counteracted ethanol intake in WT and was associated to increased DA transmission (assessed as phosphorylation of DARPP-32 and GSK3 β) in striatum and prefrontal cortex. Forced ethanol intake increased expression of D_3R . Thus, increased expression of D_3R associated with activation of RACK1/BDNF seems to operate as a reinforcing mechanism in voluntary ethanol intake. Taking into account that ethanol intake increases mesolimbic DA, low levels of extracellular DA resulting from D_3R overexpression would facilitate ethanol intake, and high levels of extracellular DA, from either gene deletion of D_3R blockade, would inhibit ethanol intake. Thus, modulation of DA mesolimbic pathway by selective targeting of D_3 receptor might provide a basis for novel weaning treatments in alcoholism.