CHF5074, in clinical development for the treatment and prevention of Alzheimer's disease, acts as a microglial modulator switching microglia from M1 to M2 activation state

<u>V. Porrini</u>^{1, 2}, C. Branca¹, A. Lanzillotta¹, M. Benarese¹, B.P. Imbimbo³, M. Pizzi^{1,2}

¹Dept. of Molecular and Translational Medicine, University of Brescia, Italy; ²IRCCS San Camillo Hospital, Venice, Italy; ³Research & Development, Chiesi Farmaceutici, Parma, Italy

Neuroinflammation is considered to play a prominent and early role in Alzheimer's disease. Recently, CHF5074 has been showed to reduce TNF α and CD40L levels in cerebrospinal fluid of healthy subjects. In this study, we analysed the time-dependent changes in the expression profile of pro-inflammatory and anti-inflammatory microglia in co-cultures exposed to beta-amyloid 1-42 (A β) and CHF5074.

Astrocyte-microglia co-cultures were prepared from new born mice and exposed to a single dose of 10 μ M soluble A β at 14° DIV. Co-cultures were treated with 3 μ M CHF5074 and the RNA was isolated 2 days and 8 days later.

In co-cultures exposed to $A\beta$, we detected an early M1 pro-inflammatory expression of TNF α , IL-1 β and iNOS mRNAs. These effects picked at two days and fell to basal level at 8 days. Co-exposure to CHF5074 totally suppressed the expression of pro-inflammatory genes at two days.

In order to evaluate the protective microglial activation (M2) we considered mRNA levels of MRC1 (mannose receptor type C-1), TREM2 (triggering receptor expressed on myeloid cells-2) and ARG1 (arginase-1). In co-cultures exposed to A β , we detected a reduction of MRC1 and no changes of TREM2 or ARG1 mRNAs. Co-exposure to CHF5074, but not to ibuprofen or R-flurbiprofen, significantly increased mRNA levels of both MRC1 and TREM2.

Our results obtained in a cell-based model of $A\beta$ -induced neuroinflammation strongly suggest that CHF5074 can directly modulate inflammatory response by switching microglia M1 into a M2 activation mode, independently from interaction with circulating cells and apart from modulation of $A\beta$ generation.