Mechanisms of GABA release from cerebellar nerve terminals: role of Na⁺/Ca²⁺ exchangers, GAT1 transporter reversal, Ca²⁺-induced Ca²⁺ release and anion channels

L. Raiteri^{1,2}, C. Romei¹, M. Milanese^{1,2}, C. Usai³

¹Dept. of Pharmacy (DIFAR), Pharmacology and Toxicology Section, University of Genoa ²Center of Excellence for Biomedical Research, University of Genoa

³Institute of Biophysics, National Research Council, Genoa

The aim of the present work was to study some mechanisms of GABA release from mouse cerebellar nerve terminals following stimuli that can be considered 'physiological' and stimuli generated by ion dysregulations typical of some neuropathological conditions.

Glycine GlyT₂ transporters are localized on glycine-storing nerve endings. Their main function is to accumulate glycine to replenish synaptic vesicles. Glycine was reported to be costored with γ -aminobutyric acid (GABA) in cerebellar interneurons. It was previously found that GABA uptake elicited glycine release from cerebellar nerve endings by various mechanisms. We now investigated whether and through which mechanisms activation of glycine GlyT₂ transporters could evoke release of GABA. Purified mouse cerebellar synaptosomes were prelabeled with [³H]GABA and exposed to glycine in superfusion. Glycine stimulated [³H]GABA release in a concentration-dependent manner. The effect of glycine was insensitive to strychnine or to 5,7-dichlorokynurenate but it was abolished by selective GlyT₂ transporters blockade. About 20% of the evoked release was dependent on external Ca²⁺ entered by reversal of GABA GAT1 transporters. Na⁺ ions, reaching the cytosol during GlyT₂-mediated glycine uptake, likely activated mitochondrial Na⁺/Ca²⁺ exchangers, causing an increase in cytosolic Ca²⁺, which in turn triggered a Ca²⁺-induced Ca²⁺ release process at inositoltrisphosphate receptors. Finally, the increased availability of Ca²⁺ in the cytosol allowed the opening of anion channels permeable to GABA. Thus, the function of GlyT₂ transporters is not only to take up glycine and replenish synaptic vesicles but also to mediate GABA release. Part of the glycine-induced GABA release mechanisms exhibit a significant connection with functional plasmalemmal and mitochondrial Na⁺/Ca²⁺ exchangers.

In the second part of the study, GABA release provoked by ion dysregulations typical of some neuropathological conditions such as ischemia was analyzed using purified cerebellar synaptosomes pre-labeled with [³H]GABA and exposed in superfusion to high KCl or veratridine. The overflows caused by relatively low concentrations of the two releasers were almost totally external Ca^{2+} -dependent. Higher concentrations of KCl or veratridine involved also external Ca^{2+} -independent mechanisms. The GABA overflows evoked by veratridine and, less so, the overflow evoked by high KCl, occurred in part by reversal of the GAT1 transporter. The two depolarizing agents did not activate store-operated or transient receptor potential or L-type Ca^{2+} channels. Significant portions of the external Ca^{2+} -dependent overflows evoked by high KCl or veratridine were also dependent on Ca^{2+} originated through mitochondrial Na^+/Ca^{2+} exchangers. Ca^{2+} -induced Ca^{2+} release mediated by inositoltrisphosphate receptors participated exclusively in the GABA release stimulated by high KCl which also occurred in a modest portion through anion channels.