ATB-346 a novel hydrogen sulfide-releasing anti-inflammatory drug induces apoptosis of human melanoma cells and inhibits melanoma development *in vivo*

P. De Cicco¹, E. Panza¹, C. Armogida¹, G. Ercolano¹, G. Scognamiglio², G. Botti², G. Cirino¹, J.L. Wallace³, A. Ianaro¹

Increased cyclooxygenase-2 (COX-2) expression and enhanced prostaglandin E_2 (PGE₂) production are frequently attributed to the inflammation-associated cancers such as lung, colon, bladder, prostate and other cancer types. Hydrogen sulfide releasing non-steroidal anti-inflammatory drug (H_2 S-NSAIDs) are an emerging novel class of compounds with significant anti-inflammatory properties (Wallace et al., 2010). They consist of a traditional NSAID to which an H_2 S-releasing moiety is covalently attached.

We have recently demonstrated that H_2S donors inhibit melanoma cell proliferation (Panza et al., 2014). In the current study, we evaluated the potential beneficial effects of ATB-346 [2-(6-methoxynapthalen-2-yl)-propionic acid 4-thiocarbamoyl-phenyl ester], a H_2S -releasing derivative of Naproxen, in a murine model of melanoma.

Aims & Methods: We utilized cell culture and a mouse melanoma model to evaluate: the effect of ATB-346 on: i) *in vitro* growth of human melanoma cells; ii) *in vivo* melanoma development in mice.

Results: Cell culture studies demonstrated that ATB-346 reduced the *in vitro* proliferation of human melanoma cells and this effect was associated to induction of apoptosis and inhibition of NF-κB activation. Moreover ATB-346 had novel Akt signaling inhibitory properties. Daily oral dosing of ATB-346 (43 μmol/kg) significantly reduced melanoma development *in vivo* in mice.

Conclusion: ATB-346, a novel H_2S -NSAID, inhibits human melanoma cells proliferation by inhibiting pro-survival pathways associated to NF- κ B activation. Oral treatment with ATB-346 inhibits melanoma growth *in vivo* in mice. Our results suggest that the combination of inhibition of cyclooxygenase and delivery of H_2S operated by ATB-346 may offer a promising alternative to existing therapies for melanoma.

References

Panza E, De Cicco P, Armogida C, Scognamiglio G, Gigantino V, Botti G, Germano D, Napolitano M, Papapetropoulos A, Bucci M, Cirino G, Ianaro A. Role of the cystathionine γ lyase/hydrogen sulfide pathway in human melanoma progression. Pigment Cell Melanoma Res. 2015 Jan;28(1):61-72.

Wallace JL, Caliendo G, Santagada V, Cirino G. Markedly reduced toxicity of a hydrogen sulphide-releasing derivative of naproxen (ATB-346).Br J Pharmacol. 2010 Mar;159(6):1236-46.

¹Dept of Pharmacy, University of Naples Federico II, Naples, Italy

²Unit of Pathology, Istituto Nazionale per lo Studio e la cura dei tumori 'Fondazione G. Pascale' IRCCS, Naples, Italy

³Dept of Physiology & Pharmacology, University of Calgary, Calgary, Alberta Canada