Role of Striatal A_{2A}, D₂ and mGlu₅ Receptor Interactions in the Modulation of Glutamate Levels from Rat Striatal Nerve Terminals

S. Beggiato^{1,2}, A.C. Borelli¹, D.O. Borroto-Escuela³, S. Tanganelli^{1,2}, K. Fuxe³, L. Ferraro^{2,4}

¹Dept. of Medical Sciences and ⁴Dept. of Life Sciences and Biotechnology, University of Ferrara, Italy

³Dept. of Neuroscience, Karolinska Institutet, Stockholm, Sweden

In the central nervous system the oligomerization of neurotransmitter/neuromodulator receptors generates functional entities with biochemical features that are different from those of the individual components of the heteromer (Fuxe et al., 2008). It has been reported that adenosine A_{2A} ($A_{2A}R$), D_2 receptor (D_2R) and metabotropic glutamate type 5 (mGlu₅R) receptors colocalize in striatopallidal efferent neurons (Cabello et al., 2009), where they interact both physically and functionally (Cabello et al., 2009; Ciruela et al., 2011). Specifically, the co-stimulation of both $A_{2A}R$ and mGlu₅R produces a modulation of D_2R agonist binding that is significantly stronger than the reduction induced by stimulation of either receptor alone (Popoli et al., 2001). Taken together, these initial results suggested the existence of a striatal $A_{2A}R/D_2R/mGlu_5R$ oligomer, which has been also supported by co-immunoprecipitation experiments (Cabello et al., 2009).

Striatal glutamatergic nerve terminals possessed $A_{2A}R$, D_2R and mGluR₅, suggesting a presynaptic functional interaction between these receptors or the putative $A_{2A}R/D_2R/mGlu_5R$ oligomer. In the attempt to investigate the functional relevance of this interaction, in the present study we evaluated the effects of the $A_{2A}R$ agonist CGS21680, the mGluR₅ agonist CHPG and the D_2R agonist quinpirole, alone or in combination on K⁺-evoked glutamate levels from rat striatal nerve terminals.

The $A_{2A}R$ agonist, CGS21680 (10 and 30 nM) and the mGluR₅ agonist CHPG (300-600 μ M) by themselves facilitated K⁺-evoked glutamate levels from striatal nerve terminals. On the contrary, the D₂R agonist quinpirole (10-100 nM) significantly decreased K⁺-evoked glutamate levels from striatal nerve terminals. Either CGS21680 or CHPG, at concentrations by themselves ineffective (1 nM and 100 μ M, respectively), partially counteracted the quinpirole-induced reduction of K⁺-evoked glutamate levels from rat striatal nerve terminals. Interestingly, the co-stimulation of both $A_{2A}R$ and mGlu₅R produces a modulation of quinpirole-induced reduction of K⁺-evoked glutamate levels that is stronger than the reduction induced by stimulation of each receptor alone.

These results provide evidence that an interaction between $A_{2A}R$, D_2R and mGluR₅ and/or the putative $A_{2A}R/D_2R/mGlu_5R$ heterotrimer modulate glutamate release from rat striatal nerve terminals. As dopamine, adenosine and glutamate regulate striatal output nuclei involved in the control of motor behaviour, the $A_{2A}R/D_2R/mGlu_5R$ complex might be relevant to striatal function both under normal and pathological conditions, like Parkinson's disease.

Fuxe et al. (2008). *Physiology (Bethesda)*. 23, 322-32.
Cabello et al. (2009). *J. Neurochem*. 109, 1497-507.
Ciruela et al. (2011). *Biochim. Biophys. Acta*. 1808, 1245-55.
Popoli et al. (2001). *Neuropsychopharmacology*. 25, 505-13.

²IRET Foundation, Ozzano Emilia, Bologna, Italy