In silico identification and pharmacological evaluation of 5-Methoxyflavone as a neuroprotective agent against β -amyloid-induced toxicity

S. Merlo¹, L. Basile², M.L. Giuffrida³, M.A. Sortino¹, S. Guccione², A. Copani^{2,3}

¹Dept. of Biomedical and Biotechnological Sciences

²Dept. of Drug Sciences, University of Catania, Catania, Italy

³Institute of Biostructure and Bioimaging, National Research Council, Catania, Italy

According to the 'cell cycle hypothesis of Alzheimer's disease (AD)', apoptotic death is the result of a failed attempt of neurons to divide. Consistent with this assumption, DNA replication has emerged as an obligatory step in the apoptotic pathway triggered by the β -amyloid protein (A β) in neurons. Neuronal DNA replication is unusual, since it is carried-out by DNA polymerase- β (DNA pol- β) and likely lasts months before the occurrence of neuronal death (Copani et al., 2008). DNA pol- β might therefore represent a relevant target for neuroprotection in AD. Known DNA pol- β inhibitors are not selective for the enzyme. Dideoxycytidine, which we have shown to prevent A β -induced DNA replication and apoptosis (Copani et al., 2002), is a preferential inhibitor of DNA pol- β over other polymerases.

In the present work, we searched for selective DNA pol- β inhibitors by virtual screening of a database containing more than 4,000 natural and over 20,000 drug-like compounds. Nine compounds were selected for their best scores, and 5-methoxyflavone (5-MF) was a top-scored compound when docked into the 8-kDa lyase domain of DNA pol- β .

All selected compounds were tested on both wild type and DNA pol- β -null mouse fibroblasts, which are hypersensitive to the DNA-methylating agent methylmethanesulfonate (MMS). Among the tested compounds, only 5-MF was able to enhance cellular sensitivity to MMS in wild type but not DNA pol- β null cultures. MMS sensitivity resulting from 5-MF exposure in wild type cells mimicked that observed in cells devoid of pol- β , showing that 5-MF was able to inhibit the base-excision repair activity of DNA pol- β required for MMS resistance. Similarly, 5-MF directly inhibited human DNA pol- β activity on a gapped DNA substrate in a cell-free assay. In pure cultures of rat cortical neurons, 5-MF was devoid of intrinsic toxicity when applied for 48 h and up to a concentration of 10 μ M. These cultures are a useful model to investigate potential inhibitors of A β -induced DNA replication and apoptosis (Copani et al., 2002). Consistent with an inhibition of DNA pol- β , 5-MF (5-10 μ M) was able to reduce both the number of S-phase neurons and apoptosis triggered by A β .To our knowledge, this is the first demonstration that a flavonoid compound is able to halt the apoptotic pathway triggered by A β via a definite mechanism, thus achieving the status of promising drug candidate.

Copani et al (2008).*Curr Med Chem*.15: 2420-32. Copani et al. (2002).*Faseb J*. 16: 2006-8. Copani et al. (2006).*J Neurosci*. 26: 10949-57.