Epigenetic regulation of adenosine \mathbf{A}_{2A} and dopamine D2 receptor gene transcription on compulsive food consumption

M.V. Micioni Di Bonaventura¹, M. Pucci², M.E. Giusepponi¹, C. Lambertucci³, R. Volpini³, M. Maccarrone⁴, C. D'Addario², C. Cifani¹

Satisfactory treatments for eating disorders, such as binge eating disorder and bulimia nervosa, are not available at present. Using a well-characterized animal model of binge eating, we investigated the epigenetic regulation of the adenosine A_{2A} Receptor ($A_{2A}AR$) and dopamine D2 (D2R) gene.

The animal model included four groups (rats fed normally, and then stressed or not, rats exposed to cycles of restriction/refeeding, and then stressed or not).

Gene expression analysis carried out on the amygdala complex of restricted and stressed rats revealed a significant increase of $A_{2A}AR$ and D2R mRNA when compared to non-stressed and non-restricted rats. Administration of the $A_{2A}AR$ agonist (VT 7) induced in restricted and stressed rats a significant increase of $A_{2A}AR$ and D2R mRNA levels when compared to vehicle group, whereas a significant decrease in rats pre-treated with the $A_{2A}AR$ antagonist (ANR 94) was observed.

Pyrosequencing analysis revealed a significant reduction of the % of DNA methylation at $A_{2A}AR$ promoter region in restricted and stressed compared to the non-stressed and non-restricted animals. We did not find any difference in D2R DNA methylation among different groups. Significant changes in the DNA methylation status of $A_{2A}AR$ promoter were found in restricted and stressed rats after administration of VT 7 or ANR 94. We observed a decrease of DNA methylation in VT 7 treated rats and a hypermethylation in ANR 94 rats with respect to the vehicle group.

The increase in $A_{2A}AR$ mRNA observed in restricted and stressed rats could be due to a compensatory mechanism to counteract the effect of binge eating, suggesting that the $A_{2A}AR$ activation, inducing receptor gene up-regulation, could be relevant to reduce food consumption. We here demonstrated for the first time the epigenetic regulation of $A_{2A}AR$ in an animal model of binge eating.

¹University of Camerino, School of Pharmacy Pharmacology Unit, Camerino (MC), Italy

²University of Teramo, Faculty of Bioscience and Technology for Food Agriculture and Environment, Teramo, Italy

³University of Camerino, School of Pharmacy Medicinal Chemistry Unit, Camerino (MC), Italy

⁴University of Rome, Campus Bio-Medico, Rome, Italy