Detection Of IVS14+1G>A in Dihydropyrimidine Dehydrogenase Gene And 5-Fluorouracil Chemotherapy In Patients With Solid Malignancies

M.T. Vietri1,2, A.M. Molinari1,2, A. Capuano3,4, G. Caliendo1, A. Cennami1, F.F. Bernardi3, I. Marabese4, M. Cioffi1,2, F. Rossi3,4

1. Clinical Pathology - Department of Biochemistry, Biophysics and General Pathology, Second Medical School of Naples, Italy
2. U.O.C. Clinical and Molecular Pathology, Second University of Naples of Naples, Italy
3. Pharmacology Section 'L. Donatelli'- Department of Experimental Medicine, Second Medical School of Naples, Italy
4. U.O.C. Clinical Pharmacology and Toxicology, Second University of Naples, Italy

The 5-fluorouracile (5-FU) is one of the most commonly anticancer drug for the treatment of solid malignancies including colorectal, breast, head and neck cancer.

Dihydropyrimidine dehydrogenase (DPD) is the initial and rate-limiting enzyme in the metabolism of 5-FU, and approximately 80%-85% of 5-FU is metabolized by DPD in the liver in dihydro5-FU, an inactive product. Patients with deficiency in DPD activity may suffer from serious toxicity after the administration of 5-FU, such as gastrointestinal and hematologic toxicities.

More than 30 polymorphisms in DPYD gene have been found, and one of the most common is G to A mutation in the splicing-recognition sequence of intron 14 (IVS14+1G>A), reported in approximately 3% of patients. This mutation leads to absence of exon 14, which results in partial or complete deficiency of DPD activity.

We investigated the frequency of IVS14+1G>A of DPYD in 70 (52 colorectal, 6 gastric, 1 breast, 3 pancreatic and 2 head and neck cancer) consecutive patients from Campania before chemotherapy.

DNA extraction from peripheral blood sample, PCR and hybridization were performed using the kit PGX-5FU StripAssay (Vienna Lab).

We found the heterozygous mutation in 2/70 patient (2.8%). This polymorphism, one or two variant alleles, results in partial or complete lack of DPD activity. Therefore, the identification of IVS14+1G>A may help identify poor-metabolizer patients at risk of developing toxicities after standard doses of 5-FU. For patients with heterozygous DPD IVS14+1G>A mutation, 5-FU dose should be appropriately reduced to reduce adverse reactions, while the homozygous ones should avoid application of 5-FU and its derivatives.